Antibodies can stop most HIV strains from infecting human cells

Empower & Inspire: Spread Health & Wellness

Scientists have discovered two potent human antibodies that can stop more than 90 percent of known global HIV strains from infecting human cells in the laboratory, and have demonstrated how one of these disease-fighting proteins accomplishes this feat.

According to the scientists, these antibodies could be used to design improved HIV vaccines, or could be further developed to prevent or treat HIV infection. Moreover, the method used to find these antibodies could be applied to isolate therapeutic antibodies for other infectious diseases as well.

The above image shows the atomic structure of the antibody VRC01 (blue and green) binding to HIV (grey and red). The precise site of VRC01-HIV binding (red) is a subset of the area of viral attachment to the primary immune cells HIV infects (NIAID VRC)

“The discovery of these exceptionally broadly neutralizing antibodies to HIV and the structural analysis that explains how they work are exciting advances that will accelerate our efforts to find a preventive HIV vaccine for global use,” says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health. “In addition, the technique the teams used to find the new antibodies represents a novel strategy that could be applied to vaccine design for many other infectious diseases.”

Led by a team from the NIAID Vaccine Research Center (VRC), the scientists found two naturally occurring, powerful antibodies called VRC01 and VRC02 in an HIV-infected individual’s blood. They found the antibodies using a novel molecular device they developed that homes in on the specific cells that make antibodies against HIV. The device is an HIV protein that the scientists modified so it would react only with antibodies specific to the site where the virus binds to cells it infects.

The scientists found that VRC01 and VRC02 neutralize more HIV strains with greater overall strength than previously known antibodies to the virus.

Source: National Institute of Allergy and Infectious Diseases, USA


Leave a Comment

Health Newstrack