Researchers at Case Western Reserve School of Medicine have discovered a technique that directly converts skin cells to the type of brain cells destroyed in patients with multiple sclerosis, cerebral palsy and other so-called myelin disorders.
This breakthrough now enables “on demand” production of myelinating cells, which provide a vital sheath of insulation that protects neurons and enables the delivery of brain impulses to the rest of the body. In patients with multiple sclerosis (MS), cerebral palsy (CP), and rare genetic disorders called leukodystrophies, myelinating cells are destroyed and cannot be replaced.
The new technique involves directly converting fibroblasts – an abundant structural cell present in the skin and most organs – into oligodendrocytes, the type of cell responsible for myelinating the neurons of the brain.
“Its ‘cellular alchemy,'” explained Paul Tesar, PhD, assistant professor of genetics and genome sciences at Case Western Reserve School of Medicine and senior author of the study. “We are taking a readily accessible and abundant cell and completely switching its identity to become a highly valuable cell for therapy.”
In a process termed “cellular reprogramming,” researchers manipulated the levels of three naturally occurring proteins to induce fibroblast cells to become precursors to oligodendrocytes (called oligodendrocyte progenitor cells, or OPCs).
This initial study used mouse cells. The critical next step is to demonstrate feasibility and safety using human cells in a lab setting. If successful, the technique could have widespread therapeutic application to human myelin disorders.
It is a real breakthrough in medical research.
Source: Case Western Reserve University, USA